

Chapter #6 DESIGN LOADS Fruitland Vertical Farm and Marketplace

January 6, 2020

Team 12 Chapter Lead(s): Kevin Luong, David Moore

PROJECT OVERVIEW

The City of Hamilton has retained GreenTech Engineering (GreenTech) to complete the design and consultation for the Fruitland Vertical Farm and Marketplace located at the intersection of North Service Road and Fruitland Road in Stoney Creek, Ontario. The City of Hamilton's 2031 Master Plan (2015) identifies the need for sustainable infrastructure, with the goal of implementing innovative solutions for the problems threatening today's society. To fulfill this need, the City has chosen to implement a vertical farm in a community slated for urban development in the coming years.

The objective of the Fruitland Vertical Farm and Marketplace is to provide an alternate means of food production in a population-dense environment. The proposed undertaking will seek to act as a "sustainable landmark" within the City of Hamilton by implementing sustainable structural, stormwater, transportation, and geotechnical practices throughout its design and construction.

TABLE OF CONTENTS

6.1 design load considerations	iii
6.2 gravity loads	
6.2.1 Dead Load	iii
6.2.2 Live Load	iv
6.2.3 Snow Load	
6.2.4 Wind Load	vi
6.3 lateral loads	vi
6.3.1 Seismic Load	vi
6.3.2 Wind Load	
6.3.3 Notional Load	xi
References	1 -
Appendix A	2 -

6.1 DESIGN LOAD CONSIDERATIONS

Determining the design loads for the building is crucial for ensuring that the appropriate structural members are being used. Throughout the building's service life, various loads will be applied and thus it is important that the greatest loads within statistical reason are applied with the appropriate load combinations. For this reason, Greentech Engineering takes a conservative approach when calculating the design loads to ensure the building's structural members are resilient for present and possible future use of the building.

The following gravity and lateral loads are based off many factors such as the context of the building's location, environmental factors, occupational use and items in the building. After the design loads are calculated a structural analysis will be able to inform Greentech Engineering and other stakeholders if a change in the architectural and structural layout is required. These loads were calculated in compliance with NBCC 2015, Division 4, Part 4 (Structural Design).

6.2 GRAVITY LOADS

6.2.1 Dead Load

Dead load is defined as a permanent load due to the weight of building components, including weight of the members, weight of all materials of construction added into the building, weight of partition and permanent equipment, and weight of vertical load due to earth, plants and trees.

The resulted dead loads for Fruitland vertical farm and market place are summarized in Table 1, and detailed calculated can be found in Appendix A.

Level	Partition (kPa)	Floor Slab (kPa)	Fire protection (kPa)	Rack (kPa)	Structural framing (kPa)	Duct, pipe and wiring (kPa)	Cladding (kN/m)	Ceiling (kPa)
Roof	-	0.3	0.07	-	0.5	0.25	-	-
4th	1	1.84	0.07	0.2	0.5	0.25	4.8	-
3rd	1	1.84	0.07	0.2	0.5	0.25	4.8	-
2nd	1	1.84	0.07	0.2	0.5	0.25	4.8	0.2

6.2.2 Live Load

Live load, according to NBCC 2015, is a variable load due to intended use and any occupancy (including loads due to cranes and the pressure liquid in containers). In practice, the greatest live load at each level is used to design for structural members and connections

Table 2 and 3 shows the possible live loads for each level and the specified live load will be used for design.

			Live Load	(kPa)		
Level	Balcony	Restaurant (dining area)	Office Area (upper floor)	Service room	Equipment Room	Pumping room
Roof	-	-	-	-	-	-
4th	-	-	2.4	3.6	3.6	3.6
3rd	-	-	2.4	3.6	3.6	3.6
2nd	4.8	4.8	2.4	3.6	3.6	3.6

			Live Loa	d (kPa)		
Level	Mechanical Equipment	Washroom	Roof	Kitchen	Retail and wholesale (rack)	Design Live Load
Roof	-	-	1	-	-	1
4th	3.6	2.4	-	-	4.8	4.8
3rd	3.6	2.4	-	-	4.8	4.8
2nd	3.6	2.4	-	4.8	4.8	4.8

Table 2: Summary of Live Load 1

Table 3: Summary of Live Load 2

6.2.3 Snow Load

Typically snow loads are the main design load for roofs and thus is the greatest concern for the structural designer when choosing appropriate sections. It is greater than the roof live load because the NBCC suggests the use of 1 kPa for live load whereas the 1 in 50-year ground snow load in the Hamilton area is 1.1 kPa and this is before the application of other coefficients.

As can be seen in Figure 1 below, Fruitland Vertical Farm and Marketplace consists of three different roof sections. The largest portion is labelled Roof 1 and it is a curved roof that is over the main vertical farm portion. Roof 2 is a flat roof that is over the main building but the office portion of the building. A flat portion of the roof was required for roof top units to be placed and maintained throughout the year which would not have been possible on the curved portion of the roof. Roof 3 is the roof that extends over the marketplace which is also a flat roof. The calculations for the snow load on each roof surface can be seen in Appendix A.

Roof 2 and Roof 3 both experience snow load drift which is responsible for the accumulation of snow which piles up when a difference in height is present between two neighboring elevations. The extents of the snow load distribution can be seen in Figure 1 below and the calculations for the drift load can be seen in Appendix A. Figure 2 depicts how this load would be distributed.

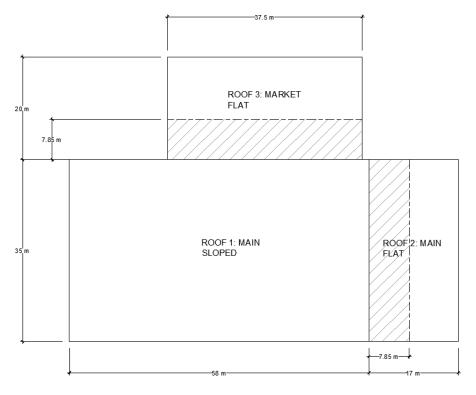


Figure 1: Roof labels along with drift load extents

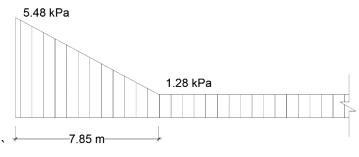


Figure 2: Snow Load Accumulation Distribution

As seen in Figure 2, at the boundary between the lower roof and higher elevation, the snow load is 5.48 kPa. Over 7.85 m this snow load decreases linearly to 1.28 kPa at which it remains. This accumulation occurs only on Roof 2 and 3 and a simple uniform distribution occurs over the entirety of the main roof. All unhatched portions of Figure 1 have the same uniform load of 1.28

kPa. It is expected that the increase in snow load at the hatched portions in Figure 1 will result in either greater member sizes or smaller spacing in roof joists.

6.2.4 Wind Load

The last gravity load which will be considered for this development is the case of wind uplift or downward wind pressure upon the roof. In many gabled roof cases, non-lateral wind load does play an important part for secondary members when considering uplift. The roof in consideration for Fruitland Vertical Farm and Marketplace is slightly slanted and thus the uplift in this situation may not be crucial. Regardless, uplift is calculated for the surface of each roof using Figure 4.1.7.6.-C in the NBCC. Figure 3 below shows the uplift and downward wind pressure that is exerted on each roof. Downward wind pressure rarely governs the gravity design and usually it is not a load that requires consideration for the design – this is also the case for this development.

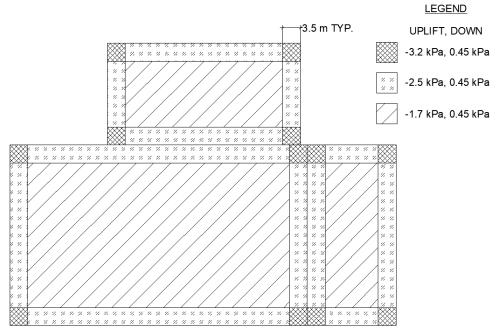


Figure 3: Roof Wind Pressure Distribution

6.3 LATERAL LOADS

6.3.1 Seismic Load

Seismic load is deemed to be rare and unexpected loading compared to other frequent sustained loads acting on a structure, such as dead load or live load (Xue, 2012). Seismic load only acts in a short period of time; however, it can cause huge damage due to unexpected ground motion behavior.

The primary objective of seismic provision stated in NBCC 2015 is to provide a sufficient design to match with limit state design philosophy. It is strictly defined in NBCC 2015 that the acceptable seismic hazard is at 20% probability of being exceeded in 50 years (Codes, 2015). According to section 4.1.8.7 in NBCC 2015, the analysis for seismic design can be carried out by Dynamic Analysis Procedure or Equivalent Static Force Procedure.

In NBCC 2015, the equivalent static force procedure is applied for structures that meet any of the following criteria:

- a. In case where $I_E F_a S_a(0.2)$ is less than 0.5
- b. Regular structures that are less than 60 m in height and have a fundamental lateral period, T_a, less than 2 seconds in each of two orthogonal directions
- c. Structures with structural irregularity of Type 1, 2, 3, 4, 5, 6 or 8, that less than 20 m height and have a fundamental lateral period, Ta, less than 0.5 seconds in each of two orthogonal directions

Foundation

The foundation systems were not analyzed in this study. However, according to previous studies, Fruitland vertical farm is founded on stiff soil, thus, site classification is "C" (Ontario Association of Architects, 2016).

Design Response Spectrum

A response spectra is obtained by calculating the response of many single-degree-of-freedom (SDOF) systems to a specified excitation with various damping ratio (Xue, 2012). Response spectrum is the plot of the peak responses with different period.

Design response spectrum combined the spectra of several earthquakes occurred in the same region, thus, it represents the characteristics of ground motion in that area. According to NBCC 2015, for a specific vibration mode and damping ratio, the base shear of a seismic force-resisting system is proportional to its spectral acceleration at the corresponding natural vibration period of the structure.

Figure 4 shows the design response spectrums for the building.

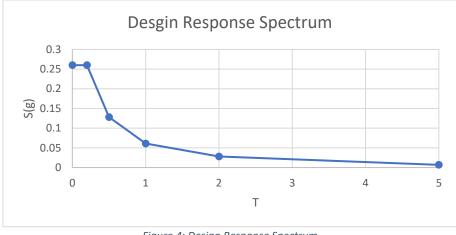


Figure 4: Design Response Spectrum

Ductility-Related Force Modification Factor (R_d)

In NBCC 2015, ductility-related force modification factor (R_d) is accounted for to determine the required full-yield strength of seismic force-resisting system (Xue, 2012). It reflects the capability of a structure to dissipate the input energy causing by an earthquake through its inelastic behavior. Therefore, for material which can perform inelastic deformation, R_d is usually equal to 1.0 or higher. The greater R_d value means the higher ductility of the structure.

For moderately ductile concentrically braced frame, R_d is taken as 3.0

Overstrength-Related Force Modification Factor (Ro)

Overstrength-related force modification factor (R_o) accounts for the dependable overstrength portion in a structure designed according to the provision. According to Xue (2012), additional overstrength of the structure is introduced by choosing larger section than needed, which usually happens in practical design process. Therefore, in order to have a more accurate estimate, R_o is accounted for.

For moderately ductile concentrically braced frame, R_o is taken as 1.3

Table 4.1.8.9. SFRS Ductility-Related Force Modification Factors, R_d, Overstrength-Related Force Modification Factors, R_o, and General Restrictions⁽¹⁾

		R _d R _o	Restrictions ⁽²⁾				
Type of SFRS	R _d		Cases Where I _E F _a S _a (0.2)				Cases Where $I_EF_vS_a(1.0)$
			< 0.2	≥ 0.2 to < 0.35	≥ 0.35 to ≤ 0.75	> 0.75	> 0.3
Steel Structures Designed and Detailed According to CSA S16 ⁽³⁾⁽⁴⁾							
Ductile moment-resisting frames	5.0	1.5	NL	NL	NL	NL	NL
Moderately ductile moment-resisting frames	3.5	1.5	NL	NL	NL	NL	NL
Limited ductility moment-resisting frames	2.0	1.3	NL	NL	60	30	30
Moderately ductile concentrically braced frames							
Tension-compression braces	3.0	1.3	NL	NL	40	40	40
Tension only braces	3.0	1.3	NL	NL	20	20	20
Limited ductility concentrically braced frames							
Tension-compression braces	2.0	1.3	NL	NL	60	60	60
Tension only braces	2.0	1.3	NL	NL	40	40	40
Ductile buckling-restrained braced frames	4.0	1.2	NL	NL	40	40	40

Forming Part of Sentences 4.1.8.9.(1) and (5)

Figure 5: Value for Rd and Ro

Table 4 shows the result of seismic load acting on each level and the base shear value

Floor	Lateral Force (kN)
2nd	281.1
3rd	432.2
4th	642.8
Roof	332.6
Base Shear	1688.6

Table 4: Seismic Load Result

Refer to Appendix A for detailed calculation.

6.3.2 Wind Load

When considering which load case governs for the lateral design of the building, a comparison between the seismic and wind loads need to be conducted to see which case governs. Fruitland Vertical Farm and Market Place is located within the Hamilton region and thus can typically be governed by wind or seismic loads. Whether or not the wind loads, or seismic loads govern depend on the size and shape of the building and also on the dead load. For the size of the building which is under 20 meters and is still considered a low rise building which still could be laterally governed by wind or seismic. The wide base of the building does indicate that a wind load may govern. Regardless, a seismic and wind load analysis was conducted to ensure that the

appropriate and most stringent load case is used to design the lateral system. The calculations for uplift and also the lateral wind loads can be found in Appendix A.

Due to the shape of the building different than the regular rectangular footprint, which is outlined in Figure 4.1.7.6.-A in the NBCC 2015, conservative assumptions were made to analyze the wind load pattern on the building. The conservative assumption that was used in Fruitland's case was to imagine a rectangular prism surrounding the entirety of the building which would take on more wind load as it covered a greater area. For a visual explanation of this assumption one can visit Appendix A. Lateral load distribution can also be seen in Figure 6 and Figure 7 which extends from the base to the full height.

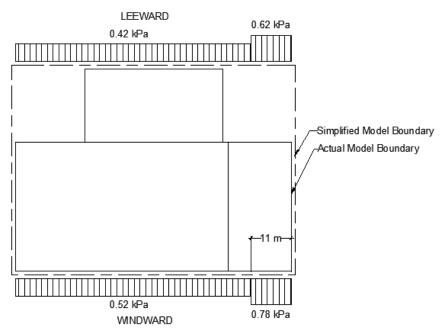


Figure 6: South to North Wind Load Distribution

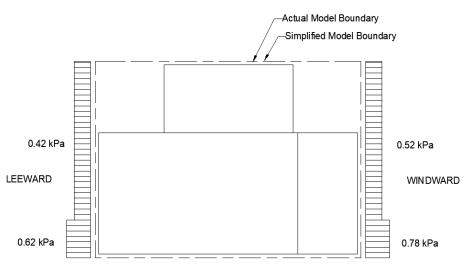


Figure 7: East to West Wind Load Distribution

Note, the values in wind distributions in Figure 6 and 7 represent loads from wind going from the windward to leeward side and the values are additive.

The total load applied on each level can be seen in Table 5 below for both the South to North distribution as well as the East to West.

	South to	North Distribution	East to	West Distribution
Diaphragm/Floor	Load (kN)	Factored Load (kN)	Load (kN)	Factored Load (kN)
Roof	169	237	227	317
4	282	395	378	529
3	226	316	302	423
2	226	316	302	423

Table 5: Total Load Distribution Per Level

When comparing the values in this table to the factored loads calculated per level in the seismic chapter it is evident that the wind loads govern the lateral design over the seismic loads.

6.3.3 Notional Load

According to CSA S16-14, the additional translation load effects produced by notional load, equals to 0.5% of total factored gravity loads, to be added to the lateral loads for each load combination. Notional load must be calculated separately for each storey and shall be applied in both orthogonal directions independently when analyze three-dimensional loading effect.

Table 6 shows the notional loads due to dead, live and snow load at each level.

Level	Notional Dead Load (kN)	Notional Live Load (kN)	Notional Snow Load (kN)
Roof	16.46	13.13	16.80
4th	58.57	63.00	-
3rd	56.81	67.69	9.09
2nd	77.24	85.50	-

Table 6: Summary of Notional Loads

REFERENCES

- Codes, C. C. on B. and F. (2015). *National Building Code of Canada 2015*. National Research Council Canada.
- Ontario Association of Architects. (2016). *Seismic Hazard Index Calculation Examples*. Retrieved from https://oaa.on.ca/oaamedia/documents/Attach2 to PT.35 Seismic Calculations (July 13, 2016).pdf
- Xue, Y. (2012). Capacity design optimization of steel building frameworks using nonlinear timehistory analysis.

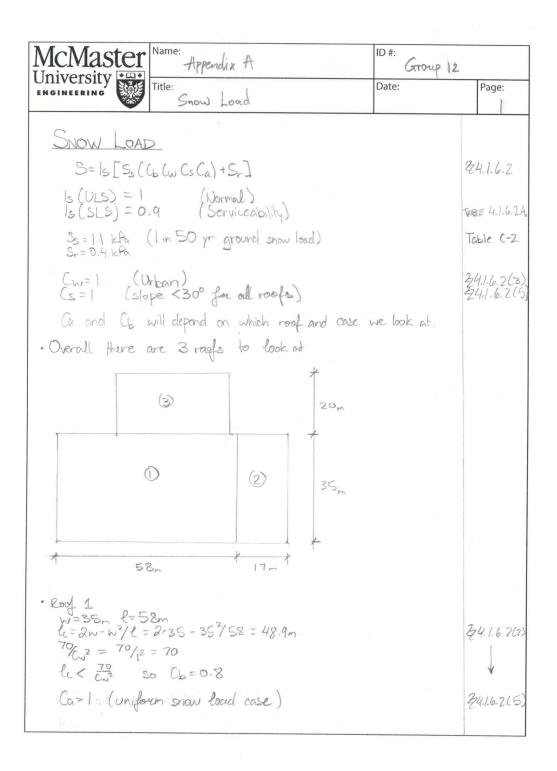
APPENDIX A

ID #: Group 12 McMaster Appendix A University Date: Page: Title: Dead Load and Live Load Dead Load and Live Load Dead Load Roof: . Glass roof = 0.3 KPa Fire protection = 0.07 KPa S16-14, p7-69 .Structural framing = 0.5 KPa . Duct, pipe, wiring (including lighting system) = 0.25kPG. . Total Dead Load Roof = 1.12 KPa. 4th Floor . Partition = 1 KPa S16-14, p7-69 . Floor Blab = 1.84 KPa . Fire protection = 0.07 KPa. .Structural framing = 0.5 KPa. . Duct, pipe, wiring (including lighting system) = 6.2 KPa .Cladding: hy= 6m thickness= 0.05 m $h_3 = 4m$ density of glass = 1615 kg/m3 g = 9.81 m/s2 cladding weight = <u>hutha</u> x thickness x density x g = 6m+4m × 0.05 m× 1615 Kg/m3 × 9.81 m/3 = 3961(N/m) Cladding weight = 4(KN/m)

McMaster	Name: Appendix A	ID #: Group	12
	Title: Dead Load and Live I	Date:	Page:
Weight of rack:			ς
Total weight of	water = $3.5 \text{ m}^3 \times 10 \text{ kW}/$	$m^{3} = 35 \text{ kN}$	
Width of I rad		n na la se desardo ago y la la n de se de se de se de se	
length of 1 rad	k = 5.6 m		
Total number o	frack = 84		
⇒ Weight of water	on floor $= \frac{35 \text{ kN}}{84 \times 1.525 \text{ m} \times 5.6}$	= 0.04879 KPa. m	
Average vegie w	leight = 9.81 N		
# vegie /rack	0		
9	egie /rack= 9.81 × 22 = 21	5.82(N) = 0.22 kN	
9	e on floor = $\frac{0.22 \text{ km}}{1.525 \text{ m} \times 5.6 \text{ m}}$		
Weight of shelf	$= 100 \text{ kg} \times 9.81 \text{ m/s}^2 =$	981 N = 0.981 KN	
⇒ Weight of shelf	on floor = $\frac{0.981 \text{ kN}}{1.525 \text{ m} \times 5.6 \text{ m}}$	- = 0.11487 KPa	
Total weight of	rack = 0.04879 + 0.01	25 + 0.114875	*
Б	= 0.1889 KPa.		
> Total weight	ofrack = 0.2 kPa		
3rd floor:			
. Partition = 1	KPq.	2	616-14, p7-69.
, Floor slab =	1-84 KPa		
. Fire protection	= 0.07KPa.		

THE COLUMN

fill-mail - house of

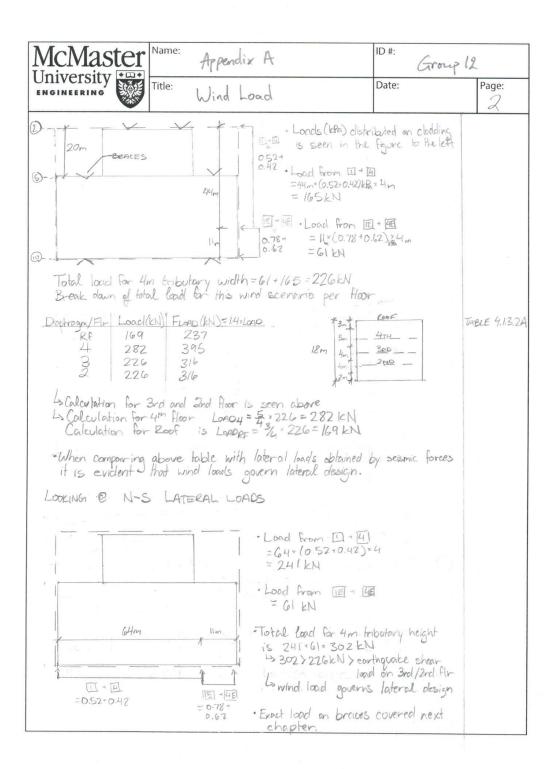


a second s			
McMaster Name: Appendix A	ID #: Grow	.p 12	
University ENGINEERING Title: Dead Load and Live Load	Date:		Page: 3
. Weight of rack = 0.2 kPa.			
. structural framing = 0.5 KPa.			
. Duct, pipe, wiring = 0.2 kPa.			
- Cladding = $\frac{4m + 4m}{2} \times 0.05m \times 1615 \text{ kg/m}^3 \times q$.81 m/s².		
= 3168 (N/m)			
⇒ Cladding = 3.2 (KN/m).			
2nd floor:			
. Partition = 1KPa		516-10	4, pg 7-69
. Floor Slab = 1.84 KPa.			10
. Fire protection = 0.07 KPa			
- Weight of rack = 0.2 KPa			
. structural framing = 0.5 kPa.			
. Duct, pipe, wiring = 0.2 KPa.			
- Cladding = 3.2 (KN/m)			
. Suspended ceiting = 0.2 kPa			
Live Load:			
Roof			
. Live Load roof = 1 KPa	N	SBCC 7	able 4.1. 5.3
4th, 3rd floor			
. Office Area = 2.4 KPa	h	JBCC Tal	ble 4.1.5.3
· Service Room = 3.6 kPa			

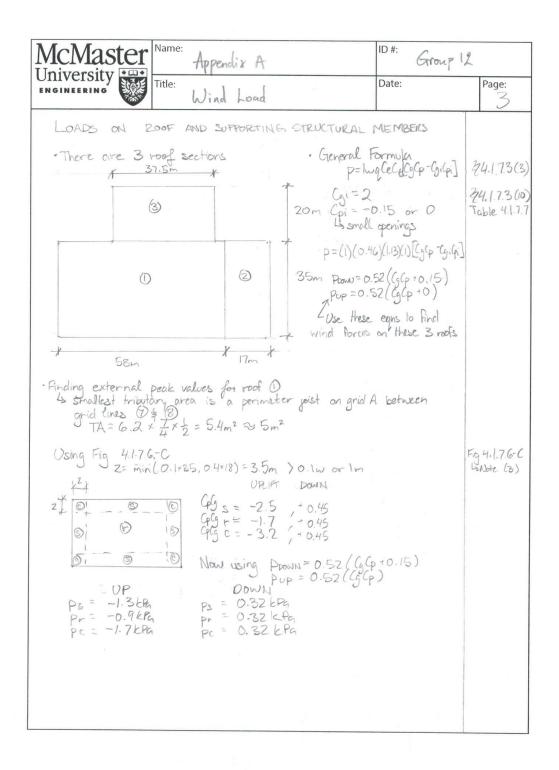
McMaster Name: Ap	pendix A	ID #:	sroup 12	
University Title:	d Load and Live L	Date:		Page: 4
. Pumping room = 3.6 KP	G.			
- Washroom = 2.4 KPa				
. Mechanical equipment = 3.	6 KPa			
. Retail and whole sale =	4.8 KPa (Assume	for racks)		
> Max Live Load = 4.81	(Pa.			
2nd floor:				
. Office Area: 2.4 KPa			NBCC	Table 4.1.5
. Service room = 3.6 kPa.				
. Pumping room = 3.6 kPa				
. Washroom = 2.4 KPa				
. Mechanical equipment =	3.6 K.Pa			
. Retail and whole sale =	4.8 KPa (Assume	for racks)		
. Restaurant = 4.8 KPa				
. Kitchen = 4.8 KPa				
=> Max Live Load = 4.8	KPa.			
and the second s			1	
			and provided and	

McMaster Name: Haiversity + (A)	ID #: Gro	np 12
University ENGINEERING	Date:	Page:
-logt 1 contid		
$S = ls [S_{S}(lb Cw(s Ca) + Sr]$		224.1.6.2
$S_{ULS} = (1) [1.1 (0.8 \times x \times 1) + 0.4]$ = 1.28 kPa $S_{SLS} = 0.9 \times 1.28$ = 1.152 kPa		
- Roof 2 (Main building - lower roof)		
$f = 35_{m} + 17_{m}$ $f = 35_{m} + 17_{m} = 2 \times 17 - 17^{2}/35 = 25.7$ $\frac{70}{Cw^{2}} = \frac{70}{7} = 70$ $f = 70$ $f = 70$ $f = 70$		₹4.1.6.2(7) ↓
Ls Orift CASE 1 (Upper roof snow comes onto lower voo B=1 hp=0 ws=35m (S=58m (upper roof dimensions) $t_{cs}=2w_s - w_s^2/l_s = 48.9$	þ	Fig 4.1.6.5B
$f = MIN(0.43 \times S_5 + 2.2, 4) = 2.673$ h=2 m (height difference)		24.1.6.13 24.1.6.5
$\begin{aligned} C_{a0} &= \frac{B_{5}h}{C_{555}} = \frac{1\times2.673\times2}{0.8\times1.1} = 6.075 \\ F &= 0.35B \sqrt{\frac{1}{2.673(4.8.9-0)}} + C_{5} \\ &= 0.35\times(1) \sqrt{\frac{2.673(4.8.9-0)}{1.1}} + 0.8 \end{aligned}$		
$= 4.62 Ca0_2 = F/C_5 = 4.62/0.8 = 5.77$		
$C_{a0} = Min(C_{a0}, C_{a0z}) = 5.77$	1 415	
CASE 2 (Lover roof is show area source for $B = 0.67$ $W_{5} = 1.7 \text{ m}$ ls = 35 m $C_{5} = 2 \times 17 - 17^{2}/35 = 25.74 \text{ m}$ $C_{6} = B_{5} h_{(5S)} = 0.67 \times 2.673 \times 2/0.8 \times 1.1 = 4.07$	drift)	

McMaster Name: Appendix A	ID #:	oup 12	
Iniversity	Date:		Page:
$\frac{1}{F=0.35\times0.67\times\sqrt{\frac{2.673(25.74-0)}{1.1}}} + 0.8$		2	24.1.6.5
=2.65 $G_{a}O_{2}=F/G_{b}=2.65/0.8=3.32$			
$C_{\alpha}O = MIN(C_{\alpha}O_1, C_{\alpha}O_2) = 3.32$			
Greatest CaO of both coses is $5.77 < \text{from CREE}$ CaO = 5.77	1		
$X_{cl} = 5 \frac{C_{bSS}}{\gamma} (C_{a}0 - 1) = 5 \times \frac{0.8 \times [.1]}{2.673} (5.77 - 1) = 7.8$	5m		
Cw=1 constantly as this is classified as non-	exposed	F	ig 4.1.6.5A
$S_{22} = \frac{15}{5} \left[S_{5} \left((bCw) (sCa) + S_{7} \right] \right]$ = 1 [1.1 (0.8×1×1×5.77)+0.4] = 5.48 kPa			
> Sus=1.28kpa after 7.85m away from h	0		
5.48kPa 1.28kPa XNOTE: CASE 3 do XNOTE: multiply loa to get	esn4 apply ds by 0.9 Ssls values		
·Roof 3 (Market) 4 = 37.5 m = 20m $4 = 2 \times w - w^2/l = 2 \times 20 - 20^2/37.5$ 4 = 29.33		×	
70/cw2=70 2c2 70/cw2 so Cb=0.8			
5 DRIFT CASE 1 h=10m Call=B3h/CbSS = 30.4 Call=B3h/CbSS = 30.4 Call=F/Cb = 5.77 (some as previous roof param	neters)		
$GU = MIN(GuO_1, GuO_2)$ = 5.77			



	ster Nam	e: Appendix A	а 	ID #: Grou	p 12
Universit	y Title	Snow Load		Date:	Page:
· loof 3 CASE Us = 2 b=0.6 Ca0, = b2	2 1 1 5 = 37. × 20 - 20	5m $\frac{2}{37.5} = 29.33$ $0.67 \times 2.673 \times 10$ 0.8×1.1	≈Z0.4		24.1-6.5
$CaO_2 = 5$	$10.67 \cdot 2.0$ 16 = 2.78/0.0 10.60, Ca0		= 2-78		
Now look Case 1 is	ing at the greater	opverning ChO and is the same	between Cas	e I and lase 2, for Roof 2	
Call = 5.7 4> because are #		the same Snow	load and xd	.(thus distribution)	
S.J.	ding profile 8kPa 1.28	for roof 3 i		B doesn't apply louds by 0.9 Sscs values	
					А. А.



McMaster Appendix A	ID #:	12
University ENGINEERING	Date:	Page:
WIND LOAD		
$P = Iwq Ce Ct Cg Cp$ $Iwous = 1:0 Iwous = 0.75 Normality (Conservative)$ $Q = 0.46 kPa Hamilton (Conservative)$ $Ce = (h/10)^{0.2}$ $= (\frac{18}{10})^{0.2}$	il Importance Category	24.1.7.3 TABLE 4.17 App C Table 24.1.7.3(3
$C_{f} = 1.13$ (not on a hill)		24.17.4
Now to calculate the CoCP and thus model similar to Fig 4.1.7.6A is low-rise boilding calculation. 4 As a result the multilevel model prism over the entire building.	required to facilitate the	
PLAN EXPLANATION (NTS) ED	VN EXPLANATION (NTS) - insimplified mode boundary - autual model - boundary	Δ
CgCp for entire structure - 0° to 5° 13 Load Case A gazens here > Case B	slape to be conservative primarily for gobled roofs.	Fig 4.1.7.6-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	pSLS=pULS × 0.75 Ex calc for pULS => surface 1 p=lwg cectCeCp p=1×8.46×1(.13×1×1) = 0.52 kB pSLS=0.75×0.52 = 0.39 kPa	
$3E 1 -1.3 1 -0.67 1 -0.51$ $Z = \min(0.1w, 0.4h) = \min(0.1*55, 0.4*8)$ $= 5.5_{m} > (0.04*55, 1) = (2.2, 1)$ $Y = \max(6, 22) = \max(6, 11) = 11m$	=min(5.5,7.2)=5.5m	Fig. 4.1.7.6-A S-Notes (7)

McMaster	Name: Appendix A		ID #: Group 1	2
	Title: Wind Load		Date:	Page: 4
S smallest TA TA = G.2 × H	pcak values of CgCp is perimeter just $2 \times \frac{1}{2} = 6.6 \text{ m}^2$	on grid @ between		
These values	are very close h	o what was obser	ved for roof O	Fig 4.1.7.1
	nin (0.1×17,0.4×18)			Note (3)
UP Ps = -1.3 kPa Pr = -0.9 kPa Pc = -1.7 kPa	$P_{0} = 0.72 k$ $P_{0} = 0.72 k$ $P_{0} = 0.72 k$ $P_{0} = 0.72 k$	Ar Dr CPa		
5 smallest T	l peak values of (A is perimeter joist $\times \frac{1}{2} = 5.25 \text{ m}^2$			
	close to Sm ² as		es to be used	
SNOTE: Z=	min(0.1x20, 0.4)	×18) = 2m		
$P_{5} = -1.3 \ k_{c}$ $P_{5} = -0.9 \ k_{c}$ $P_{c} = -1.7 \ k_{c}$	Pa Ps 2 Pa pr = Pa pc =	DOWN 0.72 kg 0.72 kg 0.72 kg		

McMaster Name: Appendix A	ID #:	p (2	
University ENGINEERING	Date:		Page: l
Earthquake Load	I		
- Classification of Building		NBCC 2	4.1.7.2.
a) Assume natural frequency is less than 1.0 t	tz and		
greater than 0.25 Hz			
b) Height of building = 18 m < 60.m			
c) Effective width :			
$W' = \frac{\Sigma h; w_i}{\Sigma h;} = \frac{4m \times 60m + 6m \times 60m}{18m} = 33.3 (m)$).		
$h < 4\omega$			
⇒ Building is not dynamic sensitive.			
- Use Equivalent Lateral Force Approach.			
Level DL(KN) SL(KN) W Roof 3292 3360	ater tank (KN)		
.4th 11714 O	265 265 265		
Wi= DLi + 0.25SLi + 0.6 Storage + Tank			
WR = 3292+ 0.25 (3360) = 4132 (KN)			
$W_{4} = 11978 (KN)$			
$W_3 = 12081$ (KN).			
$W_2 = 15713$ (KN)			
$\Rightarrow 21W_{i} = W_{R} + W_{4} + W_{3} + W_{2} = 43904 (KN).$			

McMaster Name: Appendix A	ID #:	Froup 12	-
University ENGINEERING			Page:
$I_e = 1.0$		NBCC	4.1.8.5
Find S(Ta):			
- According to NBCC Table C3			
Location: Hamilton			
$\frac{S_{\alpha}(0.2)}{0.26} \frac{S_{\alpha}(0.5)}{0.128} \frac{S_{\alpha}(1.0)}{0.061} \frac{S_{\alpha}(2.0)}{0.028} \frac{S_{\alpha}(5.0)}{0.0068} S$	(10) PGA PGV 1027 0.168 0.101		
$\frac{S_{a}(0.2)}{PGA} = \frac{0.26}{0.168} = 1.548 \le$	2.0	NBCC 4	.1.8.4.4(
\Rightarrow PGA _{ref} = 0.8 (PGA) = 0.8 (0.1	68)= 0.1344		
$\int 0.1 < PGA_{ref} < 0.2 \rightarrow take$	average		
l Site Class C			
F(0.2) = 1.0 $F(0.5) = 1.0$	F(1.0) = 1.0	NBCC -	Table 4.1.8.
F(2.0) = 1.0 $F(5.0) = 1.0$	F(10) = 1.0	B→	G
\rightarrow S(0.2) = max [F(0.2) S _q (0.2),	$F(0.5) S_{a}(0.5)]$		
$S(0.2) = max [1.0 \times 0.26, 1.0]$	X 0.128]		
S(0.2) = 0.26			
_ S(0.5) = F(0.5) Sa (0.5) = 0.1	28		
\Rightarrow S(1.0) = F(1.0) Sq(1.0) = 0.0	61		
\Rightarrow S(2.0) = F(2.0) Sa(2.0) = 0.02	28		
$(5.0) = F(5.0) S_4 (5.0) = 0.00$	268		
$-s(10) = F(10) S_a(10) = 0.002$	27		

McMaster Inversity + (1)	ID #: Group 12	1 K - 1
University ENGINEERING	Date:	Page: 3
- See attached spreadsheet for response spectru	um.	
$T_a = 0.025(18m) = 0.45(s) \rightarrow Steel brace$		C 4.8.11.3 (a)(
\Rightarrow S(Ta) = S(0.45) = 0.15		
- Get My	NBC	(-4.1.8.11.6
$T_a = 0.35 < 0.5$	·	e 4. 1. 8. 11.
$\frac{S(0.2)}{S(5.0)} = \frac{0.26}{0.0068} = 38.24$	1451	e 4. 1. 8. 11.
Steel braced frame		
$\Rightarrow M_v = \underline{1.0}$		
- Get RJ, R.	NBCC	4.1.8.9
- Moderately ductility concentrically brace frame.		
$\Rightarrow R_{d} = \underline{3.0} \qquad R_{o} = \underline{1.3}$		
$V = \frac{S(T_a) M_v I_e}{R_s R_o} W$		
$\Rightarrow V_{br} = \frac{0.15(1.0)(1.0)}{(3.0)(1.3)} (43904.)$		
$\Rightarrow V_{br} = 1689(KN)$		
- Distribute Vor on floors		
- Distribute V_{br} on floors $F_x = (V - F_t) \frac{W_x h_x}{\sum_{i=1}^{2} W_i h_i}$	NBCC	4.1.8.11.7
$T_a = 0.15 < 0.7 \implies F_t = 0$		

		Title: Eo	uthquake Loa	d	Date:	Page: 4
Level	Wx (KN)	hx (m)	Wx hx (KNm)	Wxhx ZWihi	$F_{x}(KN)$	
2nd	15713	4.0	62850.5	0-166	281.05	
3rd	12081	8.0	96647.3	0.256	432.19	
4th	11978	12.0	143740.4	0.381	642.78	
Roof.	4132	18.0	74376	0.197	332.59	
		Z	377614.26	1.0 /	1688.61	
333 kn	N Roc	pf			· · ·	
643 KN	, 4th					
432 K	N_N_ Brd					
281 k	in and					
	7871			7"		

